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bstract

The environment consists of a variety of different compartments and processes that act together in a complex system that complicate the
nvironmental risk assessment after a chemical accident. The Environment-Accident Index (EAI) is an example of a tool based on a strategy to join
he properties of a chemical with site-specific properties to facilitate this assessment and to be used in the planning process. In the development
f the EAI it is necessary to make an unbiased judgement of relevant variables to include in the formula and to estimate their relative importance.
he development of EAI has so far included the assimilation of chemical accidents, selection of a representative set of chemical accidents, and

esponse values (representing effects in the environment after a chemical accident) have been developed by means of an expert panel. The developed
esponses were then related to the chemical and site-specific properties, through a mathematical model based on multivariate modelling (PLS), to
reate an improved EAI model. This resulted in EAInew, a PLS based EAI model connected to a new classification scale. The advantages of EAInew

ompared to the old EAI (EAIold) is that it can be calculated without the use of tables, it can estimate the effects for all included responses and
ake a rough classification of chemical accidents according to the new classification scale. Finally EAInew is a more stable model than EAIold, built

n a valid base of accident scenarios which makes it more reliable to use for a variety of chemicals and situations as it covers a broader spectra of

ccident scenarios. EAInew can be expressed as a regression model to facilitate the calculation of the index for persons that do not have access to
LS. Future work can be; an external validation of EAInew; to complete the formula structure; to adjust the classification scale; and to make a real

ife evaluation of EAInew.
2007 Elsevier B.V. All rights reserved.
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. Introduction

After a chemical accident has occurred it is necessary to make
rapid decision about proper actions. This is a complicated task
ecause of the number of processes affecting the environmen-
al effects. Moreover, assessing a future effect of a hypothetical
ccident, as a step in a planning process, is even more diffi-

ult. In our society large effort has been put into developing
ifferent models to predict environmental consequences from
hemical spill. However, the majority of these models make

∗ Corresponding author at: Swedish Defence Research Agency, Division of
BC Defence, SE-901 82 Umeå, Sweden. Tel.: +46 90 10 68 29;

ax: +46 90 10 68 02.
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o attempt to bring together site-specific variables (e.g., soil
nd water variables) with chemical inherent properties (e.g.,
oxicity, density and volatility), but focus only on the chem-
cal itself and its inherent capacity to harm the environment.
he Environment-Accident Index (EAI) is an example of a tool
ased on the strategy to join the properties of a chemical with
ite-specific properties.

The EAI was originally proposed as a simple equation [1]
see Eq. (1)), based on a few chemical property descriptors and
ome properties of the surroundings at the site of the accident
uch as soil- and groundwater conditions.
AI = Tox · Am · (Con + Sol + Sur) (1)

he EAI consists of three parts: viz., (i) the acute toxicity to water
iving organisms (Tox), (ii) the stored or transported amount

mailto:asa.scott@foi.se
dx.doi.org/10.1016/j.jhazmat.2007.01.052
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f the chemical (Am) and (iii) factors controlling the spread-
ng of a chemical. The latter part, the so-called spreading part
consistency, solubility and properties of the surrounding envi-
onment) contains chemical–physical properties of the chemical,
he possibility of soil penetration and the depth and mobility of
roundwater (Con, Sol and Sur). The calculation of EAI is based
n points for the different variables [2] and hence the sum of the
alculated EAI is a sum with no unit, and it is the sum calculated
or one accident site compared to the sum of another accident
ite that is in focus. In essence the index is to be used as a simple
ool to judge and rank the consequences for the environment
n order to take proper actions in the planning process or at an
ccident site.

Con (mm2/s) is the consistency or viscosity/physical state of
he chemical, Sol (wt.%) is the water solubility of the chemical.

Sur is the properties of the surrounding environment such as

1) distance, in meters, to nearest well, watercourse or lake
(DNW),

2) depth of groundwater in meters (DGS),
3) whether the groundwater surface is inclined towards a well,

lake or watercourse or if it is horizontal (SGS),
4) the thickness, in meters, of the soil and the material it con-

sists of, for example, gravel, sand, moraine, silt, clay or
frozen ground.

As a result of the first validation [2,3] a more focused
pproach was taken on the development of EAI. Firstly, a deci-
ion was taken to focus only on accidents involving organic
hemicals [6]. The reason is that the first results showed that one
odel could not handle both inorganic and organic chemicals.

n addition, two new descriptor variables for inherent chemical
roperties were added to the data set: viz., density, D (kg/m3) and
apour pressure, Pv (kPa). These new variables are important for
escribing the vertical transportation of the chemical in water
nd soil, together with evaporative losses to the air. Another
hange was that type of soil was replaced by two new variables:
he hydraulic conductivity for each chemical and soil, K′ (m/day)
nd porosity of the soil, n (%). Hence the index describes neg-
tive effects in the environment of a chemical release to soil,
roundwater or water but not to air.

In order to avoid focusing on petroleum products and to
ncrease the chemical diversity in the dataset used in the develop-

ent of EAI, a selection of a representative subset of accidents
as made [4]. In the absence of data on environmental conse-
uences that not apply solely to one specific measured parameter
n expert panel was, based on a designed questionnaire, asked to
udge the environmental consequences after chemical accidents
5]. The expert panel judgements were then used as response
ariables.

In summary, the following strategy was proposed for the
evelopment of the EAI:
(I) To collect a larger database of accidents, together with rel-
evant numerical descriptors to be used in the development
of the index.
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(II) To condense the large number of dependent descriptors in
the database into a few orthogonal independent descrip-
tors.

(III) To use the new latent descriptors in a statistical experimen-
tal and multivariate design to select a minimum number of
representative accidents.

IV) To evaluate the environmental consequences of chemical
accidents by an expert panel.

(V) To create a PLS model to analyse the included accident
descriptors and responses in comparison with the origi-
nally proposed EAI.

VI) Model validation.

This paper deals with part V in the proposed strategy.

. Objective

The objective of this paper is to:

1) develop a mathematical relationship between the x-variables
(chemical and site-specific properties of the accidents) and
the y-variables (judgements of nine responses made by the
expert panel);

2) use the relationship to derive variable information on the
weight and importance of the x-variables.

. Material

The material used in this paper is the 18 selected chemical
ccidents divided in two subsets; a training set (TS), and a valida-
ion set (VS) consisting of nine accidents each [4]. In this study
he accidents are described by chemical and site-specific prop-
rties (x-matrix), and modelled together with response variables
rom the expert judgements (y-matrix).

.1. Chemical- and site-specific properties

The chemical accidents are described by 10 variables (x-
ariables), consisting of chemical and site-specific properties
descriptors), see Table 1.

Toxicity and amount are important variables to judge effects
n the environment after chemical accidents. However, the tox-
city associated with the amount released is the crucial factor
overning the environmental effects of a chemical at an acci-
ent site. A weakly toxic chemical in large amounts can cause
s much damage to the environment as well as a small amount
f a highly toxic chemical. Therefore, the amount to toxicity
atio, m/Tox was calculated and used in the selection proce-
ure. Properties related to the chemicals were gathered from
arious literature sources and databases [7–17]. The hydraulic
onductivity values were calculated assuming saturated soil

onditions, according to Freeze and Cherry (1979) [18] in
q. (2).

′ = vw

v′ · Kw (2)
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Table 1
Chemical accidents described by the chemical and site-specific properties in the training and validation set, respectively

Accident Chemical CAS-no. Chemical properties Site-specific properties

Pv v D Sw m/Tox DNW DGS SGS K′ n

TS1 Dieselfuel/heating oil No. 1 68334-30-5 0.5 2.75 820 0.1 9.5E+09 100 5 1 3 35
TS2 Dieselfuel/heating oil No. 1 68334-30-5 0.5 2.75 820 0.1 9.5E+09 5 0.2 1 1 15
TS3 Gasoline 86290-81-5 70 1 750 0.01 7.8E+09 100 0.01 1 3 33
TS4 Gasoline 86290-81-5 70 1 750 0.01 7.8E+09 2 1.9 0.5 1 43
TS5 Methanol 67-56-1 12.8 0.8 790 90 2.7E+06 125 33 1 1 55
TS6 Phenol 108-95-2 0.05 3.2 1070 8 2.7E+10 4 4.1 0.5 – –
TS7 n-Butylacetate 123-86-4 1.2 1 880 0.01 2.7E+08 25 23 0.5 3 33
TS8 Styrene 100-42-5 0.6 0.9 910 0.01 6.6E+09 1 3.1 1 3 33
TS9 4-Chloro-m-cresol 59-50-7 – 2.25 1370 0.001 2.6E+05 200 1.5 0.5 1 15
VS1 Kerosine/Jet fuel 8008-20-6 0.1 1.50 808 0.1 7.8E+09 15 1.5 1 3 35
VS2 Dieselfuel/heating oil No. 1 68334-30-5 0.5 2.75 820 0.1 1.4E+10 7 0.4 1 1 15
VS3 Dieselfuel/heating oil No. 1 68334-30-5 0.5 2.75 820 0.1 5.0E+09 5 8 1 1 55
VS4 Gasoline 86290-81-5 70 1 750 0.01 5.8E+09 25 0.01 1 2 35
VS5 Gasoline 86290-81-5 70 1 750 0.01 7.2E+09 2 16 1 1 43
VS6 Iso-propanol 67-63-0 4.2 3 790 90 7.9E+04 300 2 1 2 35
VS7 Chlorobenzene 108-90-7 1.2 1 1110 0.05 2.1E+11 30 2.3 1 1 15
VS8 Vinylacetate 108-05-4 12 1 930 0.02 1.7E+09 7 7.6 0.5 2 35
VS9 Formic acid 64-18-6 4.3 1.5 1220 90 8.7E+07 30 3.2 0.5 1 15

The descriptor variables are: kinematic viscosity (v, mm2/s); water solubility (Sw, wt.%); amount (m, metric tonnes) of the stored or transported chemical; acute
toxicity (Tox, mg/L); the amount to toxicity ratio (m/Tox, L); the density (D, kg/m3); vapour pressure (Pv, kPa); the distance to nearest well, lake or watercourse (DNW,
m); the depth to groundwater surface (DGS, m); the slope of the groundwater surface and the flow direction (SGS, leaning towards a well lake or watercourse = 1,
h 0.1); ′
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orizontal surface = 0.5 and no well lake or watercourse in the flow direction =
he soil (n, %).

The descriptors can be considered as consisting of two
roups: v, Sw, D and Pv describing the inherent properties of
chemical; and DNW, DGS, SGS, K′ and n describing site-

pecific properties. The amount of a chemical involved in an
ccident, and thus also the m/Tox ratio, are properties which
oes not belong to any of the two groups.

.2. Response variables

The expert panel was divided into two groups, one judging
he chemical accidents in the training set (TS), and one judg-
ng the accidents in the validation set (VS) [5]. The experts
udged both the short- and long-term effects of each accident
n:

1A) Animal life in the aquatic environment,
(1B) Ground-living animals and microorganisms,
(1C) Animals in the terrestrial (above ground) environment,
2A) Vegetation in the aquatic environment,

(2B) Vegetation in the terrestrial environment,
3A) The potential for using groundwater and surface water for

drinking water,
(3B) The potential for using land and water for economic activ-

ities, such as growing crops, forestry, commercial fishing
and building,

(4) Vital installations such as wells, cables, sewage systems,

and water treatment plants, etc.,

(5) The potential of the site for outdoor life and recreational
pursuits such as fishing (angling), walking, trekking and
swimming.

3

m

hydraulic conductivity for each chemical and soil (K , m/day); and porosity of

The experts made their judgements for each response on
continuous scale. Markings at 0% (no effects), 25% (small

ffects), 50% (moderate effects), 75% (large effects), and 100%
very large effects) served as guidance to the expert panel. Hence,
he judgements were expressed as a numerical value between

and 100%. The judgements of these questions were used as
esponses (y-variables) and modelled together (see Section 4
elow).

The expert panel study [5] showed that the responses were
orrelated. The responses showed a time dependence were the
argest effects were judged after 0–1 year and smaller effects
ith time (Fig. 1). As expected, the experts found it difficult

o judge the environmental effects after more than 1 year, and
herefore only the first time interval, 0–1 year, was modelled.

The expert panels consisted of 10 experts judging the acci-
ents in the training set, and 7 experts, judging the accidents in
he validation set. This means that single expert judgements of
n accident in one panel could not be directly compared to single
udgements of an accident in the other panel. To get comparable

easures of the judgements between the two expert panels the
edian judgements in each group were used (response variables

n Table 2). Consequently, each accident was assigned a median
alue for each response to be used in the modelling. The medians
f the responses for the 18 chemical accidents in the training-
nd validation set can be seen in Table 2.
.3. Pre-treatment of data

Variable Sw was log transformed and the variables Pv, v, D,
/Tox, DNW and DGS in the X matrix were power transformed
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Table 2
Summary of the judgements of the expert panel expressed as the median of the judgements for each response and accident (y-variables)

Accidents Expert judgements of environmental effects

1A 1B 1C 2A 2B 3A 3B 4 5

T1 75 75 32 51 51 96 55 15 75
T2 85 70 49 69 53 95 92 87 87
T3 90 75 50 74 68 77 74 26 94
T4 75 56 49 50 41 26 50 4 49
T5 55 26 35 36 38 25 26 4 37
T6 83 48 25 74 25 83 74 98 82
T7 40 52 26 23 48 25 25 61 50
T8 60 71 26 29 35 22 25 6 38
T9 25 57 13 18 25 31 18 3 6
V1 75 75 25 75 50 75 50 50 75
V2 75 75 50 75 75 75 50 50 75
V3 75 75 50 75 75 50 75 25 75
V4 75 75 25 75 50 50 75 25 50
V5 97 75 50 75 75 75 75 50 75
V6 25 25 1 25 25 25 1 1 1
V7 100 100 50 100 75 75 100 50 100
V
V

i

F
v
m
l
m

m
v

4

8 50 50 25 25
9 25 25 25 25

n order to approach a normal distribution, as described below.

Sw : 10 − log

Pv : (X)−0.25

v : (X)0.5
D : (X)−2

m/Tox, DNW and DGS : (X)0.25

ig. 1. Chemical accidents described by the medians of the judged response
alues. (a) Variable scores t[2]/t[1] for the accidents. Accidents in the TS are
arked with circles and accidents in the VS are marked with squares. (b) Variable

oadings p[2]/p[1] for the responses. Responses for years 0–1, 1–5 and >5 are
arked with squares, triangles and circles, respectively.
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25 75 25 1 25
25 25 1 50 12

Before calculation the variables in the x and y matrices were
ean centred and scaled to unit variance in order to allow each

ariable equal opportunity to influence the model.

. PLS-modelling

Partial least squares projections to latent structures, PLS, is a
ata analysis technique that can handle data matrices with cor-
elated variables like expert judgements, chemical properties,
tc. The method is also capable of handling large data matrices
nd is better than traditional methods for handling noisy and
issing data [19,20]. PLS relates two data matrices: X (contain-

ng the properties of the chemicals involved and the site-specific
roperties of each accident) and Y (containing the responses, in
his study the environmental consequences of each accident as
udged by the experts) to each other (see Fig. 2). The method
an be used to predict a response value, y, for a known set of
-variables.

PLS is built on projection of each data matrix to latent struc-

ures where the correlation between the matrices is investigated.
he new projected latent variables or vectors are calculated so

hat the first vector describes the highest correlation between X
nd Y, the second vector describes the second highest correlation

Fig. 2. A schematic picture of the modelling process.
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Fig. 5. In Fig. 5, the variable Sw has a large confidence interval
(jack knifing), but its contribution to the model is still significant
(close to one in the VIP plot). It was therefore considered
28 Å. Scott Andersson et al. / Journal of

nd so on. The vector is a straight line through the average point
f each point (observation) swarm that is fitted to the observa-
ions. Through projection of the points (observations) on this
ector the so-called score values are obtained and the score val-
es of all observations form the first X-score vector t[1]. The
ame procedure is applied to the Y matrix where the best cor-
elation from Y to X is described with the first Y score vector,
[1]. Then vectors t[2] (always orthogonal to t[1]), and u[2] (not
ecessarily orthogonal to u[1]), can be calculated in the same
ay for maximum correlation.
Having done this, t[1] and u[1] are related to each other with

he inner correlation, ui[1]=ti[1] + hi, where hi is the residual.
fter this, predictions can be made by inserting x-variables

rom an observation into the model and using the inner rela-
ion between t and u, to predict the unknown y response value.
he number of significant PLS-components calculated of the
odel, described by the goodness of fit (R2) and the good-

ess of prediction (Q2) for each PLS-component, are used to
valuate the models. R2 and Q2 range between 0 and 1. A
igh value of both is preferable and the difference between
2 and Q2 should not be too large, if possible not above
.2–0.3.

A PLS model may be re-expressed as a solution consisting
f PLS regression coefficients, B, according to Eq. (3)

= XB (3)

ere, X refers to the X matrix, including squared and/or cross-
erms (if included), and Y is the response matrix. If X and

are unscaled and uncentered, the regression coefficients are
xpressed as Eq. (4):

m = b0 + b1x1 + · · ·bkxk· · ·, etc. (4)

This solution is favourable when the purpose is to present the
odel to other people, who are not familiar with the latent way

f thinking [21].
The number of significant PLS components are usually deter-

ined using a method called cross-validation (CV). With CV
he dataset is divided into X groups of typically 5–10 objects
21]. A model is fitted for the dataset with one group excluded.
he excluded group is predicted by the model and the differ-
nce between the actual and the predicted value is calculated.
his process is repeated X times and then all partial predictions
re summarised, providing a measure of the predictive power,
hich can be expressed as the goodness of prediction (Q2) for

ach component of the model. In PLS modelling, an external
alidation is preferred, i.e., prediction of an external set of data
ith known y-responses by the model, based solely on the train-

ng set. The difference between the predicted and known y values
ill indicate the predictive power of the model.

. Results and discussion
The dataset of chemical accidents was initially divided in two
ubsets; a training set (TS) and a validation set (VS), in order to
llow an external validation of a model built on the TS. However,
uring the first modelling phase it was found that there were too

a
m

ig. 3. The objects (accidents) distance to the model in the Y-space (DModY).

ew accidents in the TS to represent the variation in the VS
nd to build a model that covered a broad spectrum of chemical
ccident situations. Therefore, we considered both the training
nd validation sets as a single, combined set for the modelling
nd to restrict the validation procedures to internal validation
cross-validation).

.1. Results of the modelling

The modelling resulted in a one-component PLS model for
he time interval 0–1 year with R2 and Q2 values of 0.758 and
.648, respectively. This model was obtained through several
teps (described in more detail below) in which one accident
T8), three responses (1C, 2B and 4) and three property vari-
bles (K′, n and v) were excluded from the calculations for the
ollowing reasons.

Firstly, accident T8 was found to be an outlier in its relation
etween X and Y as shown in Fig. 3. The reason for this anomaly
s that for this particular accident the expert judgements concern-
ng the effects in the aquatic environment varied extensively
0–96% effects). Thus, in this case, the median value (29%) was

bad estimate of the judgements made. For that reason, the
ccident T8 was excluded.

Secondly, it had already been observed that response 4
effects on vital installations) behaved differently from the other
esponses (see Fig. 1 above) and so was also excluded, resulting
n a two component model with R2 and Q2 values of 0.749 and
.518, respectively. Thirdly, responses 1C (effects on animals
n the terrestrial environment) and 2B (effects on vegetation in
he terrestrial environment), proved to have a lower predictive
apacity (Fig. 4) than the other responses and to investigate if
he predictive power of the model would be better without these
esponses they were excluded, resulting in a model with R2 and

2 values of 0.756 and 0.593, respectively.
Finally, three property descriptors (K′, hydraulic conductiv-

ty; n, porosity; and v, viscosity), were excluded since they were
f low importance for the model, as shown in the VIP1-plot in
1 The variable influence on projection parameter (VIP) shows how each vari-
ble influences the model. Variables with large VIP are the most relevant for the
odel.
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Fig. 4. The explained variance (R2Y) and the goodness of prediction (Q2Y) for
the responses.
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lated variables followed by m/Tox, DNW, D, DGS, Pv and Sw.
The variables in the two groups were summed to compare their
importance. In general the EAInew is more strongly influenced
by the chemical variable group and single variable m/Tox than
Fig. 5. Variable of importance plot (VIP) of the x-variables.

s significant for the model. The final model, EAInew was
alculated as described above.

It is of great importance to point out that the excluded
ariables are of low significance only for EAInew and its pro-
osed usage, and that these chemical and site-specific properties
ogether with the responses are still important factors to consider
n every type of chemical accident.

.2. Classes

EAIold, was developed for use with a three-category risk
cale, with classes 0–100, 100–500 and more than 500. Each
lass was associated with specific recommendations regarding
urther investigations and measures that should be taken for
he described accident scenario. This approach was satisfactory
ince the purpose of the EAI is to give guidelines about mea-
ures that should be taken rather than exact risk values. The new
odel, EAInew, is mainly based on the accident describing vari-

bles of EAIold, with a few additional variables. One purpose of
his study was to compare the original EAIold and EAInew to see
hich descriptors were important and decide the weight they

hould be given in a final model.
To facilitate such a comparison, the EAInew also has to use

ategories or classes. One possibility would have been to use
he same division of effects levels as used in the question-
aires, i.e., 0–25% = no/small effects; 26–50 = small to moderate

ffects; 51–75 = moderate to large effects and 76–100 = very
arge effects. However, the classification associated with EAIold
as based on three categories and the initial valuation of EAIold

2] indicated that the limits for these categories worked well.
F
a

dous Materials 147 (2007) 524–533 529

iven this and the fact that accidents should be neither under-
stimated nor overestimated, the following classification scale
as proposed.

(Class I) 0–33% for small to moderate effects,
(Class II) 34–74% for moderate to large effects,
Class III) 75–100% for large to very large effects.

Using this new classification scale, EAInew can be compared
o EAIold.

.3. EAInew in relation to EAIold

To investigate the weight and importance of the accident
escribing variables in the new model in relation to the vari-
bles in EAIold, EAInew can be re-expressed as a regression
odel (see below). The PLS analysis showed that the pattern of

xplained variance is similar among all responses (Fig. 6). This
eans that the responses are similar in character and, generally,

ne response can be selected to represent the others. Therefore,
esponse 2A (effects on vegetation in the aquatic environment) is
sed as an example to study the feasibility of such an approach.

A regression model was expressed through the use of regres-
ion coefficients derived from EAInew for each variable.

The result is presented in Eq. (5), in which all the variables
re unscaled but transformed (see Section 3.3).

AInew = 18.9 + [7.1(Pv)−0.25+8.7×106(D)−2 − 3.2 log Sw]
︸ ︷︷ ︸

chemical property variables

+ 0.07(m/Tox)0.25

− [6.8(DNW)0.25 − 7.4(DGS)0.25 + 27.9SGS]
︸ ︷︷ ︸

Site-specific property variables

(5)

o compare the relative weights in the model of the variable
/Tox and two groups of variables: the chemical properties (Pv,
and Sw) and the site-specific properties (DNW, DGS and

GS), each variable and the sum of these groups were calcu-
ated for the accidents in the dataset according to Eq. (5) The
esult can be seen in Table 3.

The results show that SGS is the most important of the calcu-
ig. 6. The scaled and transformed weights, i.e., the coefficients, for each vari-
ble.
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Table 3
Calculated variables, and calculated sums of both chemical property variables and site-specific variables, according to EAInew
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he site-specific variable group (these groups and the variable
/Tox are coloured grey in the table).
Regarding how each variable influence the magnitude of

AInew compared to how they influenced EAIold, the results
how that m/Tox (compared to Am and Tox), DNW, DGS and
GS (all of which contribute to variable Sur) influenced the mag-
itude of EAI in the same way in both the old and new models.
or example: high values of m/Tox (due to very large amount
f chemicals or very toxic chemicals, or both) give high values
hen calculated in EAInew, and also high values for Am and
ox, in special tables used to calculate EAIold [2]. High values
ean, for both indices, larger effects in the environment.
However, the influence of one variable, Sw, on the two models

s qualitatively different. Low water solubility gives a high value
n EAInew and a low value in EAIold, which means that highly sol-
ble chemicals give the highest value calculating EAIold while
ighly soluble chemicals have a negative influence on the magni-
ude of EAInew. This difference between the models is probably
ue to the fact that EAIold contained inorganic chemicals that
ould both be highly soluble and toxic. The difference can also be
ue to the judgements related to EAInew, since the experts proba-
ly considered the largest environmental effects to be associated
ith accidents involving chemicals with low water solubility.
or variables Pv and D, which were added to EAInew, a high
apour pressure (Pv), and a high density (D) gives a low value
n EAInew, indicating smaller effects in the environment and

ice versa. As chemicals with a low Pv will stay in the water
nd soil environment for a longer time they can have a more
egative (toxic) influence on this environment than chemicals
ith a high Pv. Chemicals with a higher density can be more

t
S
o
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ifficult to clean up and they can therefore have larger negative
ffects on the environment than a low density chemicals.

.4. Observed versus predicted effects

To evaluate the PLS model the estimated predictions of model
AInew were analysed. In Table 4, the observed versus the esti-
ated (or “predicted”) values for each accident and response can

e seen, the classified accidents being coloured grey. It has to be
emembered that there is a confidence interval for every observed
nd, hence also every predicted response value. In Table 4, bor-
erline response values (defined as those within a confidence
nterval of ±2 of the limit between two classes), are marked with
ircles, and underestimated values are marked with squares.

The fact that many of the non-classified response values (41)
ere borderline values (26) and few were underestimated (7)

s a satisfactory result. Even if some of the response values are
lose to class limits, and therefore the classification has a fairly
igh degree of uncertainty these results show that the model
ives class predictions close to corresponding observed response
alues.

It is also clear, from Table 4, that the highest number of acci-
ents (71%) can be classified by responses 1A (effects on water
iving organisms) and 3B (the potential for using land and water
esources). Similarly, the lowest number of accidents can be
lassified according to responses 3A and 5 (53 and 47%, respec-

ively), while 59% can be classified by responses 1B and 2A.
ummarising the distribution of the accidents into classes based
n the responses, seven were classified as Class II, while Class I
nd III included four and six accidents, respectively. This is very
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Table 4
Observed and estimated (predicted) values of model EAInew
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lassified accidents are coloured grey. (a) Borderline response values, and (b) u

lose to the EAIold categories calculated for the same accidents,
ince eight of them were placed in category 100–500, four in
ategory 0–100, and five in category >500.

EAIold, is built on cross-terms as shown in Eq. (6). To investi-
ate how cross-terms influence EAInew this approach was tested
s shown in Eq. (7)

AIold = Am · Tox(Con + Sol) + Am · Tox(Sur) (6)

If the same idea is practised on Eq. (5) the result will
e an EAInew with cross-terms, EAInew(CT), as schematically
escribed in Eq. (7):

AInew(CT) = K + m/Tox(Pv + D − Sw)

+ m/Tox(SGS − DNW − DGS) (7)

Calculating a PLS model including all possible cross-terms
evealed that the only important cross-term was m/Tox·DNW,
nd according to Eq. (5), the linear model therefore would be
escribed as Eq. (8):

AInew = 18.9 + [7.1(Pv)−0.25+8.7×106(D)−2 − 3.2 log Sw]

+ 0.07(m/Tox)0.25

−[0.07(m/Tox)0.25 · 6.8(DNW)0.25]
︸ ︷︷ ︸

crossterm

−[6.8(DNW)0.25 − 7.4(DGS)0.25 + 27.9SGS] (8)
The model EAInew(CT) showed a lower R2 (0.731) and Q2

0.603) than EAInew and when EAInew(CT) was used to estimate
redictions (the same way as described above) the result was
oorer than for EAInew. This indicates that the usage of cross-
erms might be restricted in the final EAI formula.
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stimated values.

.5. Prediction of responses for 37 chemical accidents

Despite the fact that no external validation set could be used
or predictions, EAInew was used to predict responses for 37
hemical accidents. These 37 accidents were part of the dataset
n the selection procedure [4]. The responses related to these
ccidents are not known since they were not part of the expert
anel study. Table 5 shows the results of the predictions.

The model membership probability, MP value, shows that
ost accidents, at a 95% confidence level, belong to the model.
his findings show that the accidents selected to build the model

EAInew) adequately covered all of the accidents in the original
ataset. Only one accident, No. 23, has a model membership
robability lower than 5%. This accident also shows a DModX
alue (1.93) above the critical limit for a 95% confidence level
1.838) which means that this accident is regarded as an outlier
nd does not belong to the model.

When all the predicted responses (1A, 1B, 2A, 3A, 3B and
) are taken into account each accident can be placed in a class
ccording to the classification scale in Section 5.2. The results
howed that five accidents were placed in Class I, 25 accidents
n Class II, and seven accidents in Class III. This can be regarded
s a normal distribution.

.6. Potential use of EAInew in the future

EAInew has several advantages compared to EAIold. Firstly,
AInew does not require nine tables for its calculation, instead it

an be directly calculated from raw data. This is advantageous,
ince the use of tables is not only time consuming, but there
s also a risk that wrong values may be taken from the tables
hen calculating EAIold. Secondly, the calculated PLS version
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Table 5
Predictions of responses for 37 accidents [3]

The predicted response for the six responses 1A–5, the model membership
probability (MP) with a 95% confidence level, the distance to the model
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in the aquatic environment (2A) varying from 0 to 96% [5] (i.e.,
DModX), and the class of each accident according to the classification scale in
ection 5.2.

f EAInew can estimate effects for all the included responses, as
ell as roughly classifying accidents according to the new clas-

ification scale. Thirdly, the regression model of EAInew based
n a response, such as the example shown above with response
A, can easily be calculated by anyone without the ability to
erform PLS, especially if pre-calculated values of the chemi-
al properties and toxicity are listed and only the site-specific
roperties have to be included. It is also very easy to make regres-
ion models for all responses in the same way as illustrated for
esponse 2A. Finally, and most important, the EAInew is based on
selected set of representative chemical accidents chosen from a

arger and more diverse dataset than EAIold, and was developed,
ia this selection, to be as unbiased as possible. This should
ake the EAInew safer to use for many different organic chem-

cals and situations as it covers a broader spectrum of accident
cenarios.

These advantages make it possible for concerns and inter-
sted parties in different authorities, industries or other parts of

weden (or any other country) to calculate estimated effects in a
tandardised way. The only tasks they have to perform, in order
o make calculations, are to select a site for investigation and
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hen define the properties of the site (DNW, DGS and SGS) and
he amount of chemical “to be spilled”.

.7. Discussion

In this study the important components are variables describ-
ng the chemical accidents on one hand and the responses judged
y the expert panel on the other hand. In general, the results
f this study showed (Figs. 5 and 6) that m/Tox clearly has
he largest influence on the models, followed by SGS (slope
f groundwater surface), DNW (distance to nearest well, lake
r watercourse) and Sw (water solubility). Descriptors DGS
distance to groundwater surface), D (density) and Pv (vapour
ressure) are less influential, and K′ (hydraulic conductivity of
he soil), n (porosity of the soil), and v (viscosity) have little
r no influence on the models. These findings can be explained
y the relative difficulty for the experts to understand and use
he variables, which in turn depends on their familiarity with
udging the influence of these variables.

The amount and toxicity of the chemicals involved are easy
o understand and analyse, and relevant data are fairly easy to
ccess, which means that the experts are probably trained to
se such information. SGS, DNW, Sw, DGS, D and Pv are also
elatively easy to analyse, although it can be harder to find infor-
ation on some of these descriptors. The viscosity is probably

ot often used (it is harder to find data on this variable than the
ther chemically related variables) and is thus not considered to
large extent in the judgements.

The hydraulic conductivity (K′) and porosity (n) of the soil
ere used in an attempt to describe the soil numerically in a
ay that also gave sufficient information on soil properties that

nfluence the effects of accidents. The results show that these
ypes of variables did not adequately describe the soil properties,
nd maybe the old system, relying on simple soil variables [2,3],
ay have provided a better way of describing these properties. It

s also possible that geology and related variables were difficult
o judge because many of the experts lacked formal education
n hydrogeology and/or had little experience in judging these
ariables. Furthermore, this type of information is often difficult
o obtain. All these aspects might have lead to an increased
ncertainty in the judgements or caused the experts to pay less
ttention to these factors.

Regarding the response variables, response 1C, 2B and 4
ere found to be less well explained (i.e., had lower R2 values).

t is possible that the experts found it difficult to judge responses
elated to the terrestrial environment (1C, 2B) because some
elevant variables for describing these effects are not available
n the EAI model and hence also a lack of experience to judge
hese effects.

One object, accident T8 (involving the spillage of 60 tonnes
f styrene in a harbour area), was also removed from the data
et as it was considered an outlier in the y-space. One reason for
his is that the experts judged T8 to cause effects on vegetation
heir opinions of the effects in the environment varied greatly).
he median value (29%) is in this case a poor description of the
ctual judgements, so the accident becomes an outlier.
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. Conclusions

By excluding less important variables and responses a better
odel, EAInew, was obtained. EAInew has the capacity to classify

ccidents roughly, if combined with the proposed new three-
lass classification scale. Further, the results of EAInew showed
hat

A regression model of EAInew (each response), could be
obtained based on the regression coefficients of the variables.
When the contribution of each variable group to EAInew is
calculated, the chemical property variables (Pv, D, Sw) have
greater total influence on the magnitude of EAInew than the
site-specific variables (DNW, DGS, SGS).
Variables related to water solubility (Sw/Sol) have qualita-
tively different effects on the magnitude of EAIold and EAInew.
The prediction of the accidents with unknown responses
showed that EAInew has been established on a valid base of
accident scenarios, showing that the model can already be
used in this stage of development.

. Future work

The work with EAInew will continue and the highest priority
ssues should be:

to validate EAInew externally to confirm its predictive power;
to refine the structure of the formula through further consid-
eration of:
• Sw—how should it be handled in the formula?
• soil variables—can simpler soil variables be used?
• weights on the variables, especially site-specific variables.
to further refine the classification scale, modifying the
classes where necessary developing more extensive recom-
mendations and, perhaps checklists connected to each class
regarding the way the results of the EAI calculation should
be treated;
a real-life validation where EAInew is tested in real-life sce-
narios by people working with chemical accidents.
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